Современные радиаторы: технологии, материалы, эксплуатация

Современные радиаторы: технологии, материалы, эксплуатация

22.11.2018 - 11:13
Приблизительное время чтения: 5 минут. Интересно, но нет времени читать?

Радиаторы ДВС прошли долгий эволюционный путь. По мере роста удельной мощности и тепловой нагруженности моторов требуется все большая и большая теплоотдача, тенденция снижения веса автомобиля в целом заставляет производителей искать новые материалы и технологии, а теснота под капотом – неустанно работать еще и над конструкцией.

Температурный режим ДВС должен удовлетворять довольно строгим параметрам, так было всегда, даже в стародавние времена, когда на экологические параметры внимания обращали мало. Теперь, понятно, еще строже. Между точками открытия термостата и закипания системы охлаждения всего несколько градусов. Для поддержания нужного режима это скорее хорошо, нежели плохо – выше эффективность, однако места и времени для ошибки уже не остается совсем. Даже моторы конца XX – начала XXI века очень не любили как недогрев, так и перегрев. С перегревом совсем плохо по всем пунктам: рубашка охлаждения начинает кипеть в самой критической области – в районе головки блока цилиндров и камеры сгорания, соответственно, головка блока может деформироваться, ну а если и далее не обращать внимания на проблему – разжижение моторного масла, потеря им полноценных смазывающих свойств… и возможны прихваты поршней с разрушением шатунов, в общем, перегрев, даже кратковременный, зло совершенно очевидное. К недогреву тоже не стоит относиться свысока – ДВС рассчитан под определенный режим, иначе клапаны и поршни зарастут нагаром, и эффективность мотора значительно снизится. Кроме того, из-за недогрева возможны и совсем печальные последствия: нагрев в верхней части блока и в районе головки идет быстро, снизу двигатель холодный – не исключены температурная деформация, микротрещины и все сопутствующие им радости.

Впрочем, до такого состояния доводить мотор сейчас не принято – не те времена, да и дорого это. Когда спохватишься – ремонтом дело может уже и не обойтись. Ныне, когда температурным режимом управляют централизованно с помощью электронных термостатов и отслеживается каждый градус в зависимости от места рубашки охлаждения, дело нельзя пускать на самотек.

радиатор

Кроме электронных термостатов автопроизводители решили разделить систему охлаждения на несколько независимых (почти) контуров. Например, оптимальная температура для ГБЦ, как выяснилось, 87–90 градусов Цельсия, а вот для блока цилиндров ее можно поддерживать на более высоком уровне – около 105 градусов, а как это сделать? Правильно! Разделить контуры, снабдив каждый своим термостатом. Система клапанов, расположенная между ними, не дает смешиваться потокам антифриза. Потом, в случае надувных моторов нужен интеркулер, а там опять свой температурный режим, приходится для максимальной эффективности устанавливать третий контур охлаждения. Все эти контуры, как правило, в штатном режиме имеют лишь одну точку соприкосновения – расширительный бачок. Тут уже можно говорить о сложности и прецизионности систем охлаждения в целом – автомобиль обзавелся блоком управления, который, как искусственный разум, связывает теперь все в единое целое.

Места под капотом все меньше, моторы все мощнее, теплообмен выше, нужны новые материалы, технологии, конструкции, тем паче и экологи дышат в спину, никуда не денешься.

По нынешним временам все уповают на «крылатый металл», и это правильно. Именно он дает возможность удовлетворить неуклонно растущие запросы инженеров, хотя, казалось бы, еще лет двадцать назад производители автомобильных радиаторов относились к алюминию с недоверием, предпочитая более привычную медь. Технологии обработки, сборки, пайки алюминия постепенно достигли того уровня, когда всем уже совершенно очевидно – именно алюминиевые радиаторы настоящее и будущее систем охлаждения автомобилей. Надо заметить, что переход на более легкий и дешевый металл дался нелегко, но старания были вознаграждены, судите сами: алюминий в четыре раза дешевле меди, на 60% легче и к тому же жестче, что позволяет использовать двойное оребрение, делать трубки более длинными и не применять стальные поперечины в конструкции.

Когда-то самой большой проблемой перехода на «крылатый металл» были сложности с пайкой алюминия (забегая вперед, отмечу, что ныне вопрос закрыт), так что изначально производители уповали в большинстве своем на сборные конструкции. Кстати, сборные радиаторы становились все лучше и лучше, единственное, что очень не нравилось автомобилистам, – неремонтопригодность. Впрочем, снявши голову… Это общемировая тенденция для любого узла, и с ней ничего не поделаешь. Поначалу настоящим прорывом при производстве сборных конструкций явилась технология «дорнования», а по сути внутренних деформаций трубок, которая устраняла воздушный зазор при сборке и между бачками, и между теплоотводящими ламелями. Дорнование сложно назвать дешевой технологией, однако по сравнению с пайкой все равно выходит существенная экономия, впрочем, при массовом производстве окупается и то, и другое.

Немедленно встает вопрос: «Так что же лучше?» И ответ на него на самом деле не так уж прост, особенно сейчас, когда процесс дорнования разработали и для плоскоовальных трубок. Раньше была хоть какая-то ясность – ведь круглые трубки на сборных радиаторах менее эффективны в свете теплоотдачи: у круглой трубки большая аэродинамическая тень, а следовательно, конструкция в целом получается больше по размерам, что, с одной стороны, нехорошо, а с другой, учитывая разные типы автомобилей, может, и не так страшно. Не все ведь ездят на Porsche и Ferrari, в российском автопарке много бюджетной техники, для которой стоимость – решающий фактор.

радиатор2

Но пытливые умы инженеров никогда не останавливаются на достигнутом. Сначала специалисты попытались улучшить теплообмен сборного радиатора с круглыми трубками, частично нейтрализовав эту самую аэродинамическую тень. Сделано сие было следующим образом: трубки стали размещаться не по тоннельному принципу, а в шахматном порядке, в результате чего габариты радиатора удалось существенно уменьшить, а потом, когда получилось обеспечить технологию дорнования и для плоскоовальных трубок, КПД сборного радиатора стал даже выше, чем у паяного. Почему? Дело в том, что припой не обладает такой теплоотдачей, как алюминий, и в результате сборные радиаторы оказались немного, но эффективнее и к тому же дешевле в производстве.

О следующем этапе модернизации конструкции вы, наверное, уже сами догадались: плоскоовальные трубки начали ставить в шахматном порядке и на паяные теплообменники, и на сборные. В любом случае в производстве сейчас находится и та, и другая конструкция. В зависимости от целей, теплонагруженности, давления, для каждого ДВС на первый план выходит определенный набор свойств, который и определяет выбор. А паяные и сборные теплообменники закрывают вопрос по всем требуемым характеристикам. На настоящий момент с технологической и конструкторской точки зрения современные радиаторы находятся на последнем витке эволюции, улучшать вроде бы больше нечего. Однако на смену алюминию уже заявлен пластик – американские специалисты пообещали, что в скором времени появятся полностью пластиковые конструкции, однако пока должной теплоотдачи от пластика достичь не удалось. Ну а раз пока это не удалось, автопроизводители пользуются «крылатым металлом», и на данный момент он всех устраивает.


Посмотрите похожие материалы: