Delphi вселяет жизнь в автомобиль

Delphi вселяет жизнь в автомобиль

07.11.2017 - 14:12 313
Приблизительное время чтения: 2 минуты. Интересно, но нет времени читать?

Система автономного вождения Delphi научилась соблюдать правила благодаря искусственному интеллекту (ИИ).

Платформа Delphi Centralized Sensing Localization Planning (CSLP) создана на базе предустановленных обобщенных правил, описывающих основные безопасные действия автомобиля, и использует ИИ для выбора оптимального пути. Это означает, что инструкции или набор правил, которым должен следовать автомобиль, закладываются в алгоритм. Таким образом получается транспортное средство, способное принимать решения с помощью искусственного интеллекта.

Однако правила существуют не для всех ситуаций, по крайней мере в настоящий момент. По одной простой причине — пока что ни одному из игроков просто-напросто не удалось провести всех испытаний. Собственно, в том числе поэтому множество беспилотных автомобилей постоянно испытываются по всему миру — они собирают данные. Затем эти данные используются для каталогизации огромного количества возможных ситуаций, с которыми может столкнуться автомобиль, а следовательно, и способов безопасного реагирования.

То, как автомобиль реагирует на ситуацию, зависит от того, что он «видит» и «слышит» с помощью своих датчиков. Существует три типа датчиков: радары, видеодатчики (камеры) и лидары. Платформа Delphi CSLP полагается на все три типа.

Комбинация всех трех датчиков позволяет системе получать всеобъемлющее представление о том, что окружает автомобиль, увеличивая уровень безопасности и надежности.

Искусственный интеллект используется в основном для обработки визуальной информации, тогда как методы машинного обучения применяются для классификации и распознавания объектов. Эта концепция исходит из идеи, что компьютер может обучаться без дополнительного программирования точных инструкций, предписывающих реакцию на ситуацию.

Алгоритмы должны быть «натренированы» на распознавание обстановки, окружающей автомобиль. Машинное обучение работает на основе так называемой нейронной сети. Исходя из названия, ее функционирование аналогично работе мозга человека. Она «живет» в автомобиле и классифицирует объекты в режиме реального времени. Так автомобиль может «следовать» определенным правилам. Это очень сложная задача. И это одна из причин, по которой гибридный подход, комбинирующий ИИ и машинное обучение, помогает беспилотным автомобилям принимать решения подобно тому, как это делает человек. 


Посмотрите похожие материалы: