Технологии выживания ДВС

Технологии выживания ДВС

30.08.2021 - 09:48
Приблизительное время чтения: 12 минуты. Интересно, но нет времени читать?

Смогут ли бензиновые и дизельные двигатели выжить в электрифицированном мире идеального будущего? На самом деле, если на них не наложат прямой тотальный запрет, запросто! Причем не просто выжить, но и благодаря передовым технологиям обеспечить достаточно высокий уровень экологической нейтральности.

Не торопитесь хоронить

Перевозка людей и грузов имеет первостепенное значение для развития современного общества. В настоящее время окружающий нас автотранспорт почти полностью приводится в действие двигателями внутреннего сгорания, использующими жидкое топливо, из-за их приемлемой стоимости, удобства и доступности. Это около 1,2 миллиарда легковых автомобилей и почти 380 миллионов автомобилей большой грузоподъемности (данные цифры постоянно растут). Кроме того, стационарные двигатели внутреннего сгорания (например, генераторы) повсеместно используются в промышленности и на предприятиях по производству электроэнергии, что также способствует повышению уровня жизни во всем мире.

По оценкам экспертов, двигатели внутреннего сгорания (ДВС), работающие на ископаемом топливе, производят более 25% мировой энергии (около 3000 из 13 000 миллионов тонн нефтяного эквивалента в год) и при этом производят около 10% глобальной эмиссии парниковых газов. Суточная потребность в жидком топливе превышает 11 миллиардов литров.

Все альтернативы, будь то альтернативы двигателям внутреннего сгорания или жидкому топливу на нефтяной основе, сталкиваются с очень серьезными препятствиями на пути к быстрому внедрению. Но крайне поверхностное изучение проблематики вопроса выбросов привело к тому, что западное общество в основной своей массе поверило в желательность и неизбежность смерти ДВС. Например, многие люди считают, что большая часть мировых выбросов парниковых газов производится легковыми и грузовыми автомобилями, что является в высшей степени неверным.

двигатель

Однако, если отрешиться от политической конъюнктуры и вдумчиво взвесить все имеющиеся обстоятельства с технологической точки зрения, можно прийти к закономерному выводу: двигатели внутреннего сгорания не исчезнут полностью в ближайшее время, если они вообще исчезнут когда-нибудь. Ведь множество вполне конкретных транспортных задач и/или условий эксплуатации просто не подходят для электрических силовых установок на батареях или топливных элементах.

Бесспорно, прогресс альтернативных силовых приводов в автомобилестроении, произошедший в последние несколько лет, впечатляет. Накопители энергии, системы трансмиссии и технологии топливных элементов, похоже, готовы занять значительное место на рынке мобильности. Но было бы ошибкой полагать, что такие технологии полностью отменят опыт и наработки прошлого, – скорее всего, в обозримом будущем двигатель внутреннего сгорания продолжит оставаться неотъемлемой частью индустрии грузо- и пассажироперевозок.

Тем не менее это не означает, что все будет по-прежнему. ДВС претерпевает значительную эволюцию, поскольку новые стандарты экономии топлива и выбросов в секторах малой и большой грузоподъемности активно стимулируют разработку новых технологий в беспрецедентном масштабе, все ближе и ближе подбираясь к теоретическим пределам принципов внутреннего сгорания. В сочетании с продолжающимися исследованиями фундаментальных процессов, внедрением высокопроизводительных вычислений и передовых производственных технологий во всей отрасли генерируемые инженерами инновационные решения открывают превосходные возможности для создания двигателей с чрезвычайно высокой эффективностью.

В распоряжении компетентных специалистов-двигателестроителей уже есть немало разнообразных ноу-хау, позволяющих извлекать еще больше энергии буквально из каждой молекулы топлива, производя при этом еще меньше вредных выбросов. Основные из них мы и хотим привести в своем обзоре. Технологии расположены в порядке сложности и стоимости реализации.

Топлива с октановым числом 98

Сконструировать двигатель, работающий со сжатием 15:1 или выше, в принципе несложно. А это значительно улучшит его термодинамический КПД и удельную мощность, позволяя дополнительно уменьшить размеры агрегата. Для такого двигателя будет необходимо топливо с более высоким октановым числом, а показатель RON 98 представляет собой золотую середину, выше которой производство/очистка горючего потребует больше энергии, что резко снижает эффективность его использования, приводя к росту стоимости и выбросов CO2.

Рациональное отключение цилиндров

Согласитесь, далеко не всегда мы используем двигатель на полную мощность. Все эти продолжительные ускорения или буксировки тяжелых трейлеров, требующие максимальных энергетических показателей на выходе, для подавляющего большинства автомобилистов – лишь краткие эпизоды в повседневной эксплуатационной практике. Поэтому нет никакой необходимости в том, чтобы все цилиндры работали постоянно.

Исходя из того, что деактивация цилиндров способна значительно повысить эффективность работы двигателей (особенно наиболее мощных) в менее экстремальных дорожных ситуациях, инженеры уже сравнительно давно начали конструировать агрегаты, оснащенные подобной функцией. Однако наиболее заметные результаты были достигнуты лишь совсем недавно. В частности, система динамического управления подачей топлива может отключать один или несколько цилиндров в 5,3- и 6,2-литровых V-образных «восьмерках» GM, чтобы повысить экономию топлива почти на 20%.

В настоящее время Tula Technologies и Eaton предлагают аналогичные системы для дальнемагистральных дизельных двигателей, в которых и меньшая выгода от топливной экономичности (в среднем 1,5–4,0%) приносит огромные дивиденды по выбросам NOx за счет стабилизации температуры выхлопных газов на уровне, необходимом для поддержания наиболее продуктивной работы катализаторов.

Инновационные нагнетатели

Мощность двигателя ограничена количеством воздуха, которое он может «проглотить», поэтому более века назад были разработаны нагнетатели с приводом от коленчатого вала и турбонагнетатели с приводом от выхлопных газов. Электрические нагнетатели, использующие рекуперативную энергию, в частности, на двигателях Volvo Drive E и Mercedes M256; добавление мотора/генератора к турбонагнетателю устраняет отставание по мощности и позволяет концентрировать оптимальные количества энергии во время движения.

Еще два интересных варианта компрессоров с кривошипно-шатунным приводом: центробежный нагнетатель Torotrak V-Charge и нагнетатель типа Lysholm от Hansen Engine. В первом используется бесступенчатый трансмиссионный привод, чтобы быстро подбирать скорость в соответствии с потребностями. Второй оснащен специальным окном, которое открывается или закрывается в зависимости от потребности в давлении воздуха, тем самым минимизируя потери для обеспечения эффективности турбонаддува.

Необычные системы зажигания

Поскольку для сгорания топлива требуется время, обычные свечи зажигания срабатывают, когда поршень уже движется вверх, что делает первоначальное сгорание контрпродуктивным. Схемы одновременного воспламенения большего количества смеси обеспечивают более быстрое сгорание, что позволяет ему в основном происходить при ходе вниз. Ford разработал лазеры ближнего инфракрасного диапазона для зажигания нескольких точек в камере сгорания, но стоимость и надежность такой системы пока не вызывают особого оптимизма с точки зрения массового производства.

Встраиваемая свеча зажигания Transient Plasma, скажем так, впрыскивает порции низкотемпературной плазмы, способной быстро и «холодно» воспламенить ультраобедненные смеси для повышения экономии топлива на 15–20% и значительного снижения выбросов NOx.

Даже новую форкамерную систему Twin-Combustion от Maserati можно квалифицировать как ускоритель зажигания.

Переменная степень сжатия

Концепция переменной степени сжатия подразумевает высокую компрессию для экономного движения в крейсерском режиме со стабильной скоростью и низкую, когда турбонаддув переходит в фазу нагнетания. Первым автопроизводителем, поставившим данную технологию на поток, стал Nissan/Infiniti со своим 2,0-литровым VC-Turbo. С помощью хитро сконструированных поршневых шатунов этот двигатель может прямо на ходу плавно изменять степень сжатия от 8:1 до 14:1.

Однако эксплуатационные характеристики и производительность Nissan/Infiniti VC-Turbo пока не сильно впечатляют экспертов. Да и пользователей тоже. Технология требует доработки во многих отношениях.

Ее прямым развитием является прототип FEV, использующий более простую схему с эксцентриковым шатуном – давление масла, подаваемое через коленчатый вал, приводит во вращение эксцентриковый подшипник в конце поршня. Тем самым степень сжатия изменяется в более узком диапазоне с 8:1 до 12:1, но при этом точно сокращает потребление топлива на 8–10%.

Хотя, конечно, всегда следует помнить, что более высокая степень сжатия (17:1) улучшает характеристики холодного пуска, снижает выбросы углеводородов и повышает переносимость топлива с низким цетановым числом, а более низкая компрессия (14:1) снижает выбросы твердых частиц и позволяет усилить турбонаддув в условиях эксплуатации с высокой нагрузкой.

Компрессионное воспламенение

Экономичность дизеля с эмиссией бензинового двигателя! Это дихотомическое обещание технологии HCCI (Homogeneous Charge Compression Ignition – компрессионное воспламенение однородной смеси), способной спонтанно воспламенять обедненные бензиновые смеси путем сжатия. GM, Mercedes и Hyundai внедряли многообещающие программы HCCI, но только Mazda запустила HCCI в массовое производство. Ну, как бы запустила. SkyactivX все-таки иногда использует свечи зажигания и все еще считается слишком дорогим удовольствием для продажи во многих странах мира, в том числе и в Северной Америке.

В идеале двигатель HCCI сжигает бензин, но использует воспламенение только от сжатия, как и дизельный двигатель, а не свечу зажигания. Теоретически это обеспечивает эффективность дизеля без образования сажи и высоких выбросов оксидов азота (NOx). Однако для этого требуется гораздо более точный контроль температуры на впуске, а также момента зажигания.

Компания Nautilus Engineering предложила концепцию HCCI, включающую небольшой поршень наверху основного поршня, который входит в свой собственный цилиндр с более высокой степенью сжатия в верхней части хода, чтобы инициировать воспламенение от сжатия. Однако нам неизвестно о каких-либо OEM-контрактах, заключенных компанией.

Более совершенный вариант – воспламенение от сжатия с предварительным смешиванием смеси (PCCI – Pre-mix Сharge Сompression Ignition). По идее, это золотая середина между воспламенением от сжатия дизельного двигателя и HCCI, потому что сначала впрыскивается меньшее количество топлива, чтобы позволить ему лучше смешаться с воздухом в камере сгорания, а затем большее. Такое решение обеспечивает более четкий контроль времени зажигания, чем HCCI, но также может создавать очаги несгоревших побочных продуктов, что плохо сказывается на выбросах. Кроме того, двигатели PCCI имеют довольно узкий рабочий диапазон с высоким потенциалом детонации при полностью открытой дроссельной заслонке.

Третий вариант – воспламенение от сжатия с контролируемой реактивностью (RCCI – Reactivity-Controlled Compression Ignition). В этой технологии используются два вида топлива: топливо с низкой реактивностью (например, бензин), которое впрыскивается через специальный порт, и топливо с высокой реактивностью (например, дизельное топливо), впрыскиваемое напрямую. Этот метод приводит к значительному повышению эффективности, но по-прежнему характеризуется довольно высокими выбросами. Сложность использования одновременно двух видов топлива также может сделать его коммерчески нереализуемым.

Системы рекуперации отработанной энергии

Двигатели внутреннего сгорания, как известно, выделяют много тепла и вибрации; почему бы не использовать их для выработки термоэлектрической или пьезоэлектрической энергии? Предложенная BMW система Turbosteamer и многие другие отказались от реализации таких концепций по причине их высокой стоимости и веса.

бмв система

Твердотельные термоэлектрические генераторы могут превращать тепло, как правило, от компонентов системы выхлопа и самого выхлопа непосредственно в электричество. (Осуществимость производства требует повышения эффективности необходимых материалов по сравнению с сегодняшним уровнем примерно на 5%.) Исследователи из Университета Дьюка предлагают использовать пьезоэлектрические кристаллы, подобные кристаллам, расширяющимся под действием напряжения, для приведения в действие форсунок прямого впрыска для выработки энергии при вибрации.

Совершенно новые концепции двигателей

Любая принципиально новая конструкция двигателя внутреннего сгорания сталкивается с огромной промышленной инерцией. Особенно сейчас, когда все грезят электроприводом. Тем не менее несколько интересных и необычных идей не стоит сбрасывать со счетов.

Achates Power недавно получила еще один грант в размере 5 миллионов долларов от армии США для продолжения разработки своего (вы только вдумайтесь, как это звучит) трехцилиндрового двухтактного двигателя с шестью оппозитными поршнями и двумя коленчатыми валами. Как сообщается пресс-службой компании, 4,9-литровый прототип с супер- и турбонаддувом мощностью 275 л.с. по эффективности превосходит 6,7-литровый турбодизель Power Stroke в Ford F-Series на 20%.

Scuderi и Primavis предложили двигатели с разделенным циклом, которые выполняют циклы впуска/сжатия и сгорания/выпуска в отдельных цилиндрах, каждый из которых предназначен для выполнения своих конкретных задач. Благодаря этому ощутимо снижается температура. К сожалению, Scuderi столкнулась с юридическими проблемами со своими инвесторами. А Primavis переориентировала свой крошечный двухтактный двигатель на электротранспорт – с его помощью предполагается повысить запас хода электромобилей. Впрочем, как бы ни изменилась ситуация, оба проекта кажутся экспертам вполне жизнеспособными и с научной точки зрения достаточно обоснованными.

Концепцией LiquidPiston X-1 также заинтересовались служивые люди. Говоря простыми словами, она представляет собой роторный двигатель Ванкеля, вывернутый наизнанку и всего с двумя движущимися частями – вместо треугольного ротора внутри корпуса, выполненного в форме ореха у X-Engine, орехообразный ротор внутри треугольного корпуса. Но на выходе – просто исключительная по своим показателям удельная мощность.

Конструкция X-Engine сочетает высокую степень сжатия и прямой впрыск дизельного двигателя с процессом сгорания при постоянном объеме цикла Отто и способностью к чрезмерному расширению цикла Аткинсона. При этом, по словам разработчиков, полностью решаются все проблемы смазки и уплотнения, присущие роторному двигателю Ванкеля.

Ну и здесь же нельзя не упомянуть концепцию вращающейся турбины внутреннего сгорания Astron Aerospace, в которой намешано вообще что-то невообразимое: работа с разделенным циклом, HCCI, сверхдлинный цикл расширения и множество других замечательных идей. Она также все еще находится в активной разработке, обеспечивая впечатляющую мощность, крутящий момент и эффективность.

Зеленое топливо: сжигание без выбросов углерода

Биотопливо: использование зеленой энергии для производства топлива из растений, которые вытягивают CO2 из атмосферы, теоретически не добавляет нового CO2 в наш «парник». Но функционирование ДВС на чистом этаноле, сделанном из кукурузы, обычно не засчитывается в плюс экологии, потому что земля, используемая для выращивания этой кукурузы, как правило, конвертировала одно и то же количество CO2, независимо от того, становились ли ее плоды топливом или кукурузным сиропом с высоким содержанием фруктозы. Таким образом, в данном случае однозначно декларировать сокращения выбросов оксида углерода не вполне корректно.

Но помимо описанного известны и другие процессы изготовления биотоплива. В частности, из целлюлозного сырья, такого как стебли кукурузы, трава мискантус или других культур, посаженных там, где до этого ничего не выращивалось и не могло быть собрано. Кроме того, существует множество процессов для преобразования целлюлозных материалов или даже мусора в этанол, метанол или бутанол. Но, к сожалению, все они слишком дороги, чтобы конкурировать с дешевым бензином.

Прямое улавливание углерода: было предложено несколько схем для извлечения CO2 из воздуха и его гидрогенизации с образованием углеводородного топлива. Prometheus Fuels планирует производить бензин из CO2, а партнерство Audi/Sunfire намеревается изготавливать дизельное топливо из «голубой нефти», полученной путем использования экологически чистой электроэнергии для соединения углерода, выделенного из CO2, с водородом из воды. Компания Carbon Engineering планирует начать выпуск так называемого синтетического горючего в промышленных масштабах к 2022 году. И ReactWell надеется объединить разработанный в Национальной лаборатории Окриджа процесс трансформации CO2 непосредственно в этанол с собственным процессом его преобразования в сырую бионефть, которую затем можно перерабатывать в различные углеводородные топлива.

Что же в итоге? В итоге, как несложно посчитать, комплексное использование описанных выше технологий способно дать нам до 70% экономии топлива и до 50% сокращения эмиссии вредных веществ по сравнению с актуальными на данный момент показателями. Вот только какими с точки зрения ремонтопригодности станут оснащенные ими двигатели? Впрочем, это уже вопрос хоть из смежной, но все же другой области и разбираться с ним станут специалисты иного профиля.


Посмотрите похожие материалы: